

Spatial tools for conservation planning in remote spaces: end of project workshop

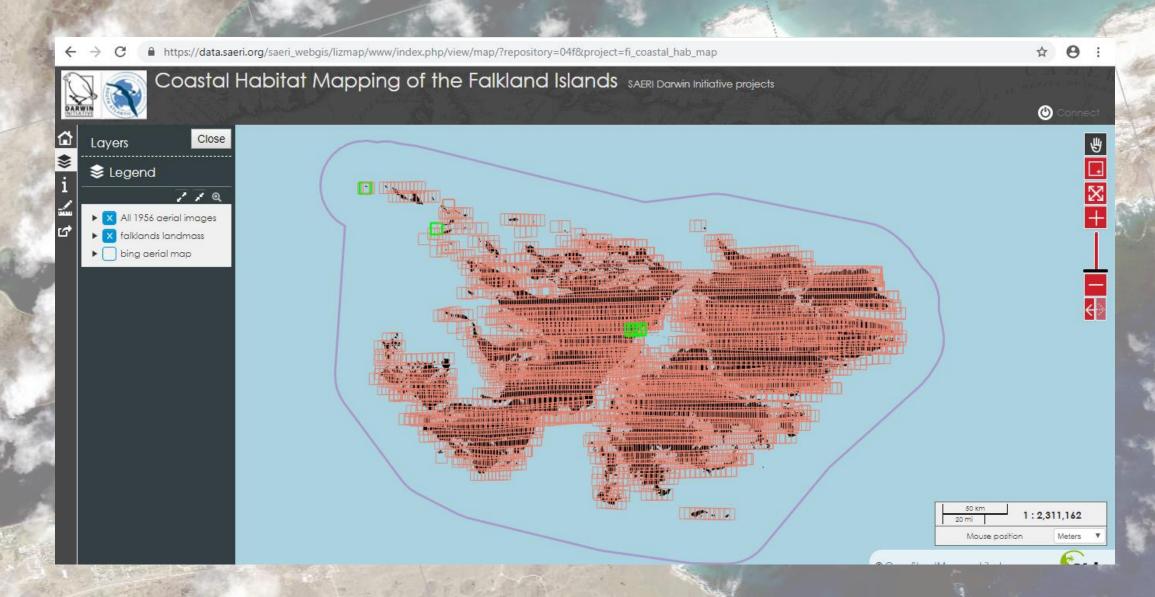
DPLUS065 Coastal Habitat Mapping Overview & summary of key outputs

#SouthAtlanticCoastalMapping

Project background

- Primary aim to improve the environmental evidence baseline for the Falklands & South Georgia
 - · Provision of baseline data for the coastal margin
- Not a one-off: developing a legacy
 - Tools and frameworks
- Real challenges around remote island territories
 - Poor connectivity using large datasets

Project overview

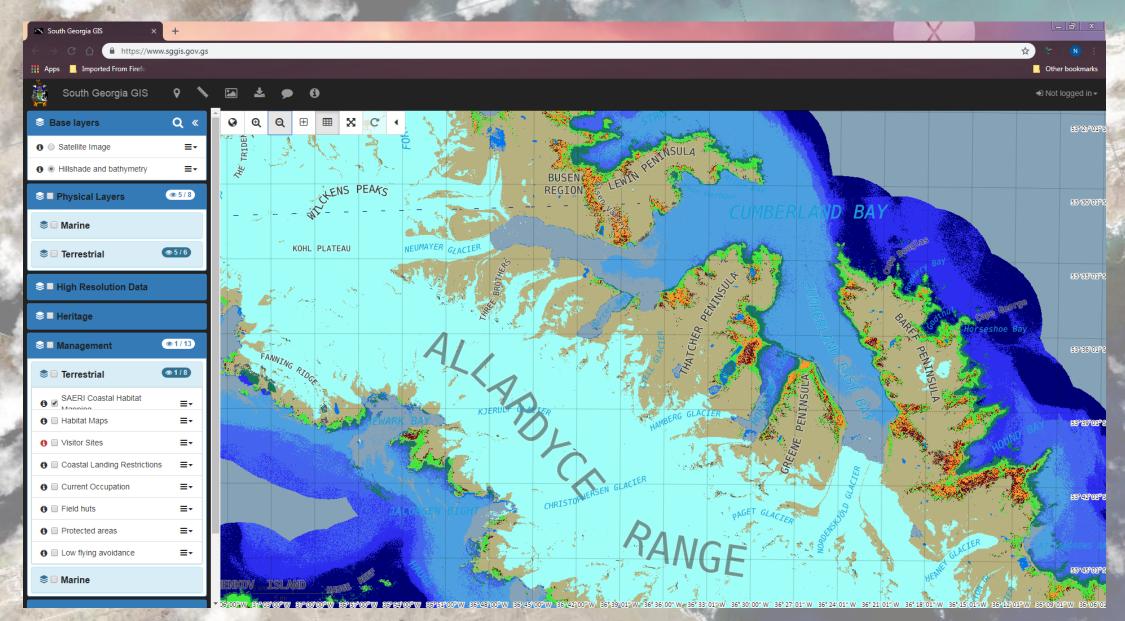

- Project formally started Summer 2017 ends this month!
- Five Work Packages:
 - WP1 1956 aerial imagery (Falklands only)
 - WP2 Broad-scale coastal habitat modelling/mapping
 - WP3 Fine-scale coastal habitat modelling/mapping
 - WP4 Prioritisation of ongoing planning/protection/monitoring
 - Coastal mapping/monitoring manual
 - Training workshop to build capacity
 - WP5 Outputs integrated with existing/emerging initiatives
 - Review of initiatives
 - End of project synthesis workshop

WP1 - 1956 Aerial Imagery: geo-referencing

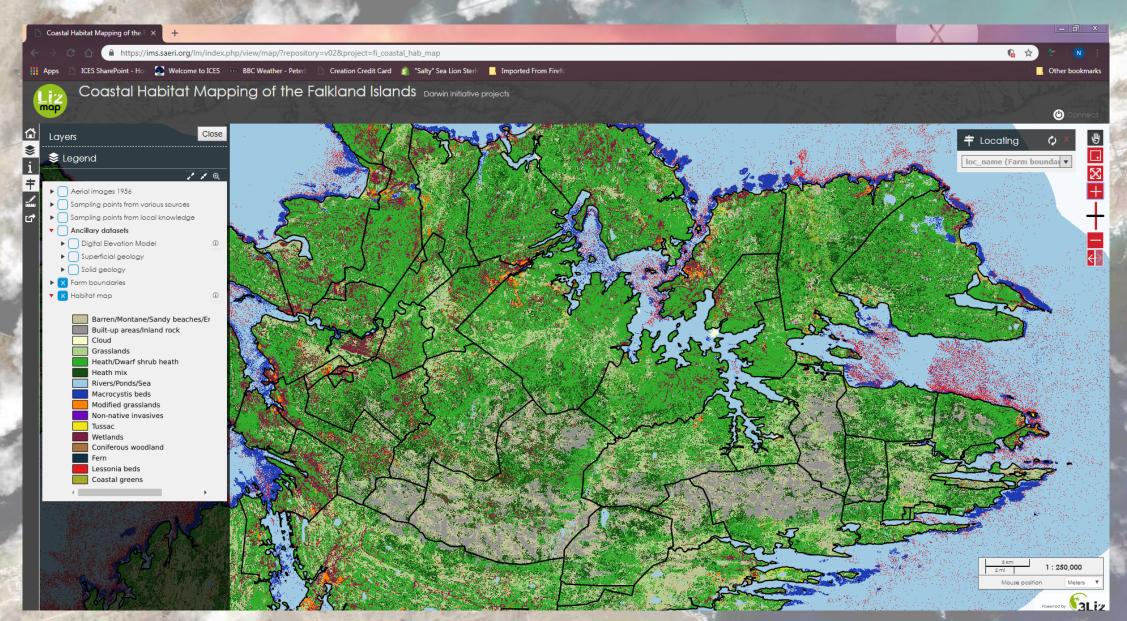
- Raw data (Tiff images) with FIG Dept. of Mineral Resources
- Huge data resource: 3,675 b&w photos 458 Gb
- Innovative scripting by SAERI IMS data centre
- Creation of a digital map on the Coastal Habitat Mapping webGIS

https://data.saeri.org/falklands habitat.html

WP1 - 1956 Aerial Imagery: geo-referencing



Other bookmarks


WP2 - Broad-scale habitat mapping

- Utilises Google Earth Engine random forest model
 - Extensive satellite imagery library "in the cloud"
 - Models can be re-run with new imagery in 5/10 years time monitoring potential
- Software trained to classify "free to access" satellite data (10m resolution) using ground validation data.
- South Georgia broad-scale maps delivered July '18
- Falklands broad-scale maps delivered October '18
- Confusion matrix indicates the confidence in modelling different habitat types.

WP2 - Broad-scale habitat mapping

WP2 - Broad-scale habitat mapping

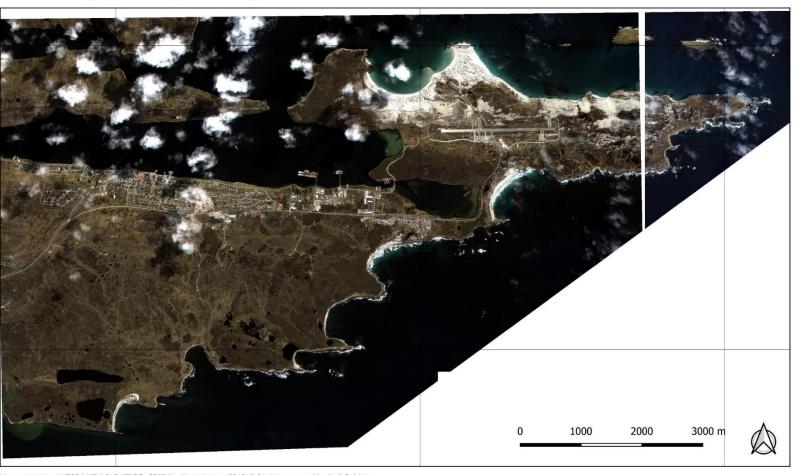
WP3: Stakeholder fine-scale prioritisation workshops

- Two successful workshops held
- Reports published on project website
- Clear steer provided on fine-scale mapping priorities

WP3: Stakeholder fine-scale prioritisation workshops

WP3: Stakeholder fine-scale mapping priorities

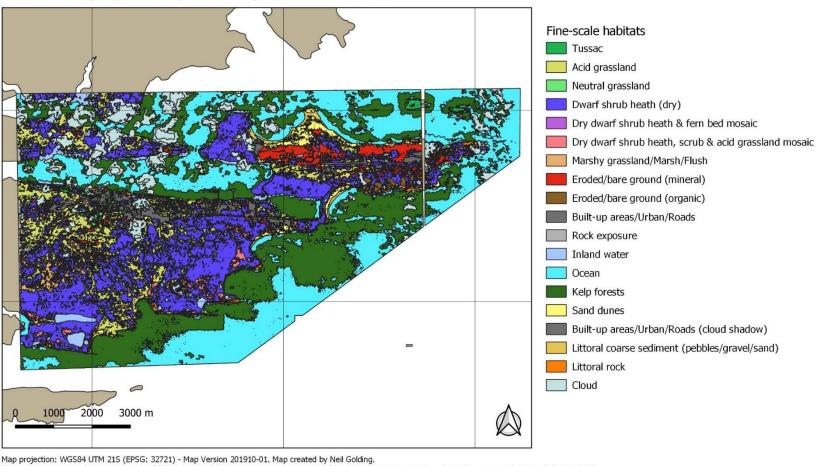
Falkland Islands


- Cape Pembroke/Stanley Common
- Steeple Jason
- Port Sussex (calafate mapping)
- Minefield 7
- Data integration case study – Cochon/Port William

South Georgia

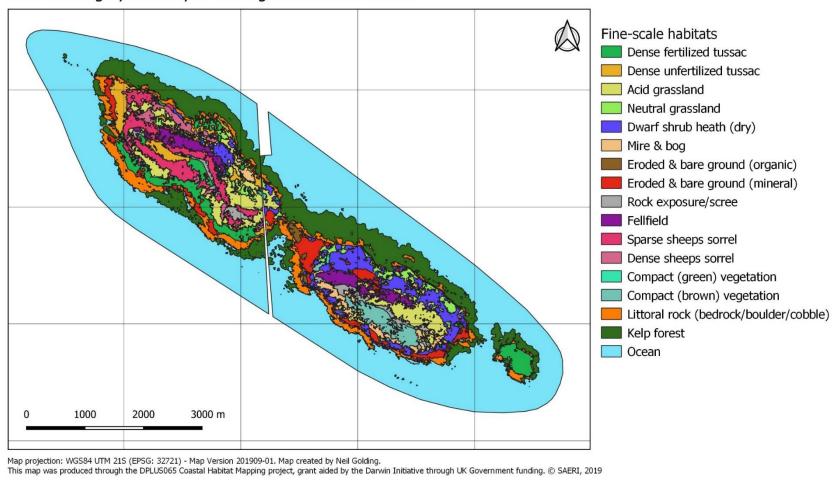
- Gold Head
- Grytviken
- Jason Harbour
- Fortuna Bay

Stanley Common & Cape Pembroke, East Falkland


A WorldView 2 satellite image of Stanley Common and Cape Pembroke, East Falkland, captured on XXX. Satellite imagery courtesy of the Digital Globe Foundation.

Map projection: WGS84 UTM 21S (EPSG: 32721) - Map Version 201910-01. Map created by Neil Golding.
This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

Stanley Common & Cape Pembroke, East Falkland


Fine-scale coastal habitat (Object Based Image Analysis Random Forest classification) derived from WorldView 2 satellite imagery of Stanley Common and Cape Pembroke, East Falkland. Imagery captured on XXX. Satellite imagery courtesy of the Digital Globe Foundation.

This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

Steeple Jason, West Falkland

Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) derived from WorldView 2 satellite imagery captured on November 14th, 2016. Satellite imagery courtesy of the DigitalGlobe Foundation.

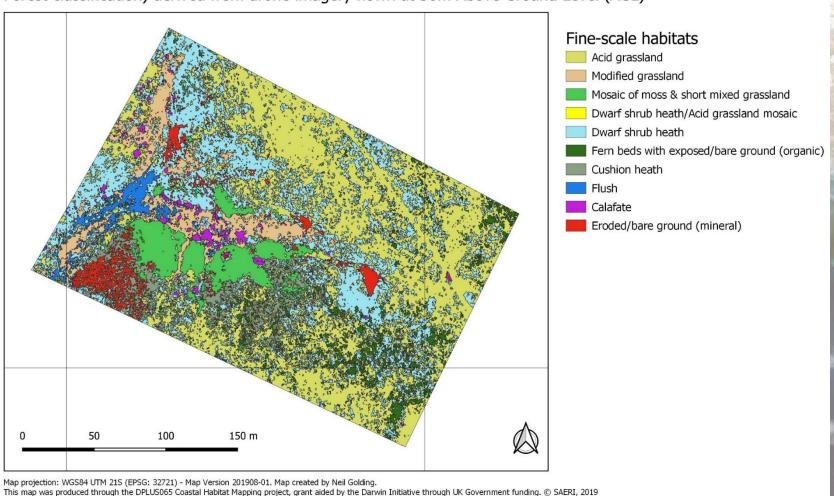
Steeple Jason accuracy assessment

Overall accuracy 81%

Fine-scale Habitat Class Fine-scale Habitat Class			Ground Validation (Observed/Reference) points																			
Littoral rock (bedrock/boulder/cobble) 14712 880 386 32 69 720 1 0 3 34 184 2 92 762 272 16 0 0 0 18165 81 Dense fertilized tussac 686 19736 8 1 0 1098 71 11 179 195 436 5 211 1812 17 440 254 142 26302 75 Kelp forest 1882 63 21932 311 11 2 0 0 0 11 0 0 0 0 7 0 0 0 0 0 24219 91 Ocean 440 2 493 62054 7 0 5 1 38 0 0 0 0 0 1 0 0 0 1 0 0 0 1 63042 98 Surf 634 3 17 96 442 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0		Fine-scale Habitat Class	Littoral rock (bedrock/boulder/cobble)	Dense fertilized tussac	Kelp forest	Ocean	Surf	& bare	Mire & bog	Compact (brown) vegetation	Rock exposure/scree	Acid grassland	Dwarf shrub heath (dry)	Felifield	Neutral grassland	Dense unfertilized tussac	Eroded & bare ground (organic)	Compact (green) vegetation	Dense sheeps sorrell	Sparse sheeps sorrell	Total number of dassified/predicted points	User Accurracy (%) (Reliability)
Relp forest 1882 63 21932 311 11 2 0 0 11 0 0 0 0 0 7 0 0 0 0						32			_	_	3			2					0	·		81
Ocean		Dense fertilized tussac	686				_	1098	71	11	179	1195	436	5	211	1812	17	440	254	142		
Surf		Kelp forest	1882	63			11	2		0	11	0	0	0	0	7	0	0	0	0	24219	
Rock exposure/scree	es			2				0	5	1		0	0	0	0	1	0	0	0	1		
Rock exposure/scree	ass		634	3	17	96	442	1	0	0	2	1	0	0	0	0	0	0	0	0	1196	_
Rock exposure/scree	당	• ' '	999			0	0	13491	_	_	_				396		38	2	0	_		
Rock exposure/scree	ojta	0			1	2	0	8	2396					14	4		_	1	8			
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	hat		17		_		0	4	679	6772			29	1	0		169	0	1			
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	ted				0	22	0	65		$\overline{}$	6468	582	_	381	0	742	0	0	37	853	9473	68
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	ij				_	0	0	,		114	462	14792			403	189	0		910	1164	20850	
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	Pre		237	389	0	0	0			0	_		11890		333		70	528	32		15544	
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	→		8	0	0	0	0			8	642	1227		10448		240	0	0	9	1147	13982	75
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	Je	Neutral grassland	503	134	0	0	0	525	19	0	0	673	269	38	732	572	24	190	33	36	3748	
Compact (green) vegetation 3 8 0 0 0 0 0 2 0 0 2 64 0 7 1 0 260 0 2 349 74 Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	ass	Dense unfertilized tussac	449	1865	1	0	0	87	110	2	64	484	501	22	202			21	108	300	9378	55
Dense sheeps sorrell 3 90 1 0 1 14 2 0 111 459 58 5 26 87 2 28 4113 1256 6256 66 Sparse sheeps sorrell 6 63 0 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	0	Eroded & bare ground (organic)	100	1	0	2	0	0	0	0	0	2	8	0	0	75	3312	1	0	0	3501	95
Sparse sheeps sorrell 6 63 0 0 69 15 31 996 1476 22 1341 3 366 0 8 1171 14845 20412 73 Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937		Compact (green) vegetation	3	8	0	0	0	0	2	0	0	2		0	7	1	0	260	0	2	349	74
Total number of ground validation points 20700 23878 22839 62522 530 16308 4442 7382 9347 22777 14803 13529 2423 11132 3941 1722 6676 19937	Ш	Dense sheeps sorrell	3	90	1	0	1	14	2	0	111	459	58	5	26	87	2	28	4113	1256		
		Sparse sheeps sorrell	6	63	0	0	0	69	15	31	996	1476	22	1341	3	366	0	8	1171	14845	20412	73
Producers Accuracy (%) 71 83 96 99 83 83 54 92 69 65 80 77 30 46 84 15 62 74		Total number of ground validation points	20700	23878	22839			16308	4442	7382	9347	22777	14803	13529	2423	11132	3941	1722	6676	19937		
		Producers Accuracy (%)	71	83	96	99	83	83	54	92	69	65	80	77	30	46	84	15	62	74		

Карра	0.78
Overall Accuracy	81%

Port Sussex – calafate mapping


Use of multispectral imagery

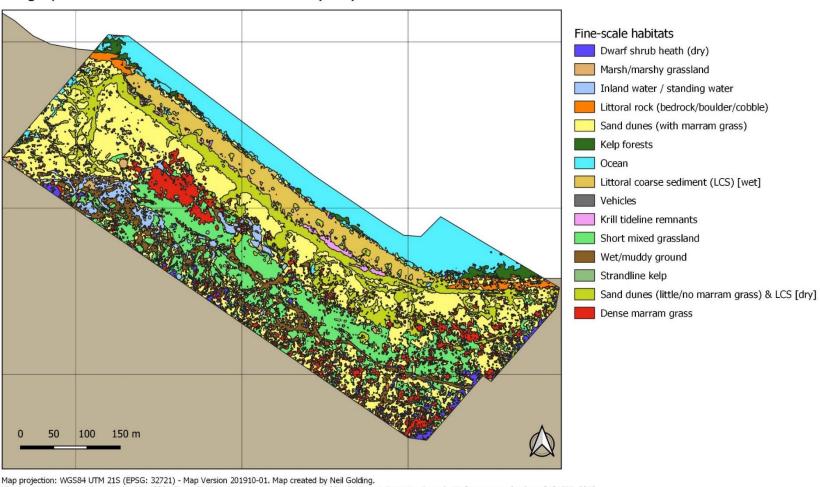
– NDVI

Port Sussex, East Falkland

Pilot study area for calafate mapping. Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) derived from drone imagery flown at 30m Above Ground Level (AGL)

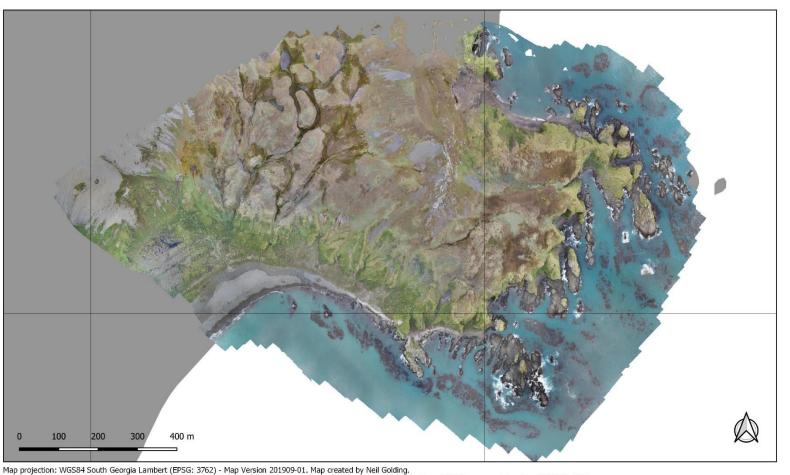
- York Bay minefields FIG priority
- Collaboration with SafeLane Global & UK Foreign & Commonwealth Office

Using drones to create fine scale models of minefields



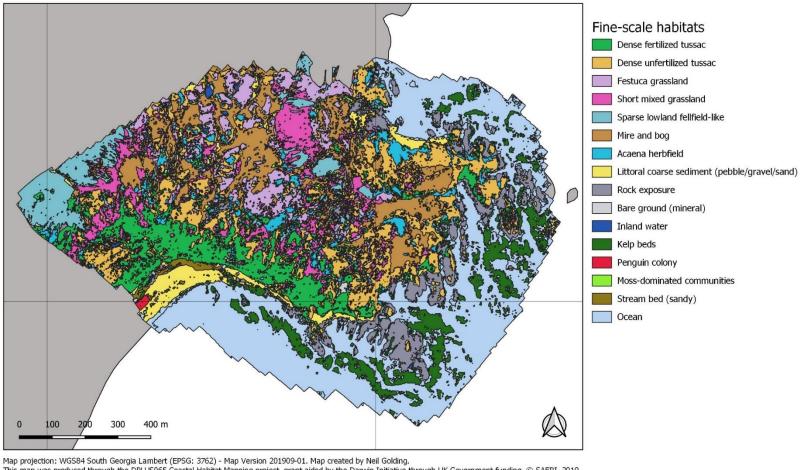
Minefield 7, East Falkland

Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) derived from drone imagery flown at 50m Above Ground Level (AGL)



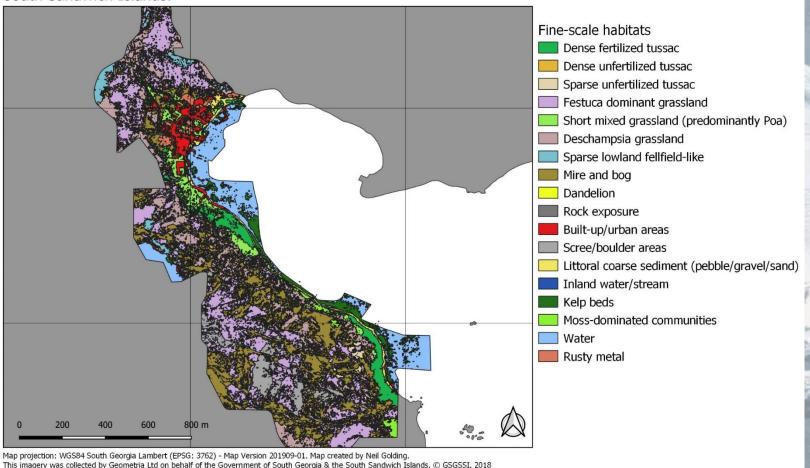
This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

Gold Head, South Georgia


An aerial imagery orthomosaic generated from a 100m AGL drone mapping mission flown on 9th March 2019

This imagery was collected through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

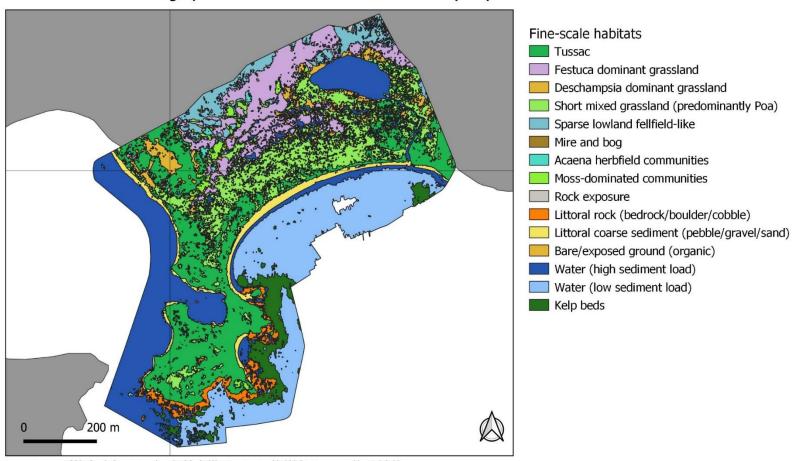
Gold Head, South Georgia


Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) Derived from drone imagery flown at 100 AGL

This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

Grytviken, South Georgia

Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) derived from drone imagery. Drone mission carried out by Geometria Ltd in April 2018 for the Government of South Georgia & the South Sandwich Islands.

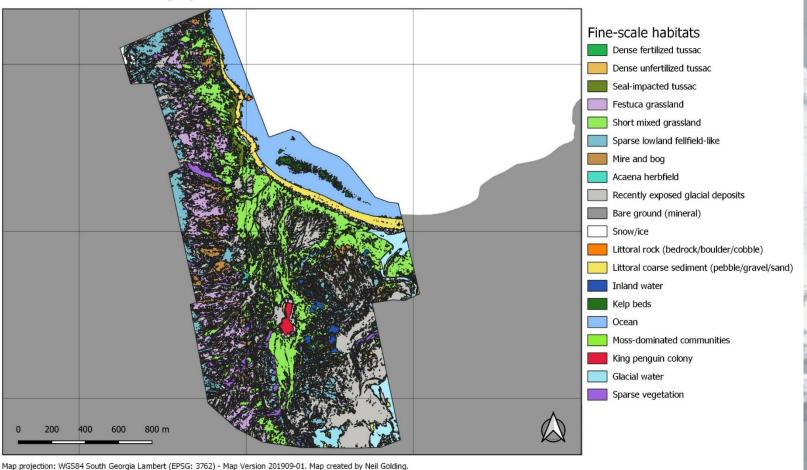

Jason Harbour

Jason Harbour, South Georgia

Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification)
Derived from drone imagery flown at 100m Above Ground Level (AGL)

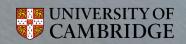
Map projection: WGS84 South Georgia Lambert (EPSG: 3762) - Map Version 201908-01. Map created by Neil Golding.

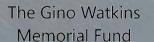
This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019



Fortuna Bay, South Georgia

Fine-scale coastal habitat map (Object Based Image Analysis Random Forest classification) Derived from drone imagery flown at 100 AGL

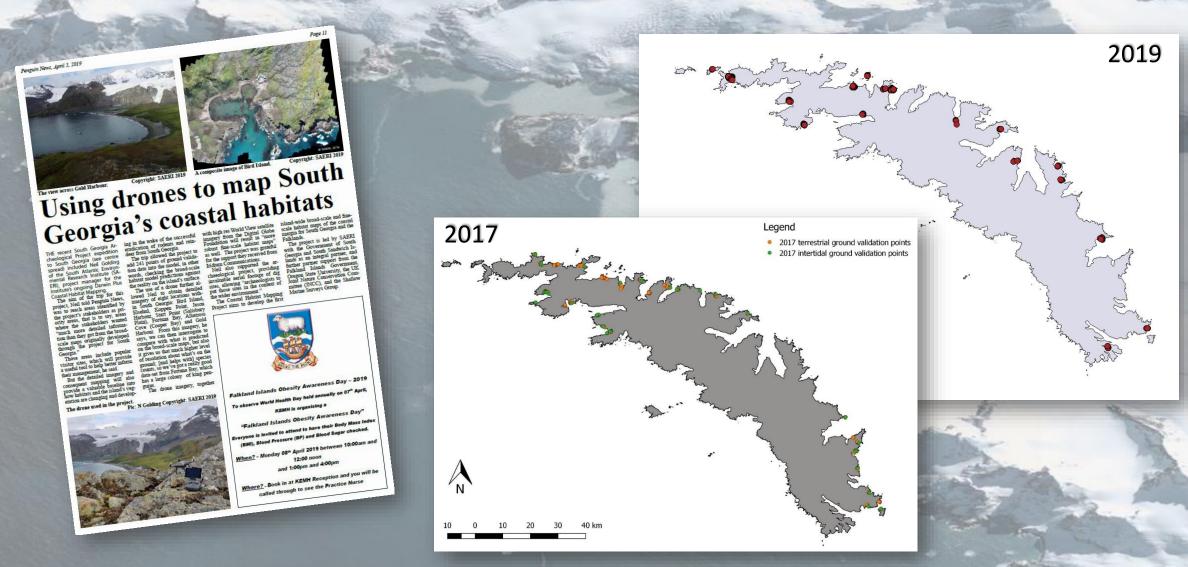



Map projection: WGS84 South Georgia Lambert (EPSG: 3762) - Map Version 201909-01. Map created by Neil Golding.

This map was produced through the DPLUS065 Coastal Habitat Mapping project, grant aided by the Darwin Initiative through UK Government funding. © SAERI, 2019

2019 South Georgia Archaeological Project

- Led by SGHT, SGA & Cambridge University
- Coastal Mapping Project supported the archaeological fieldwork
- Collected data for the Coastal Habitat Mapping Project
- Importance of collaboration / vessels of opportunity
- Valuable support from Iridium Comms & MailASail



South Georgia: Ground validation & drone imagery

Two expeditions to South Georgia: Nov/Dec '17 & Feb/March '19

WP3: Fine-scale mapping priorities - subtidal

WP3 - Fine-scale habitat mapping

 Mapping and data collection has been undertaken in a variety of other locations across the Falklands & South Georgia.

 Huge range of project applications, through collaborations and new partnerships - explored further after lunch.

WP4 – Prioritisation of ongoing planning/protection/monitoring

 Training workshop – part of the project legacy – explored by Gwawr later...

 Development of a long-term coastal mapping/monitoring manual (protocols/methods)

WP5 - Project outputs integrated with existing/emerging initiatives

A review of existing, relevant stakeholder groups, and associated data creation/management initiatives and protocols within the Falkland Islands and South Georgia, and a consideration of how the DPLUS065 Coastal Habitat Mapping project could integrate and expand these current initiatives

- Review of relevant, existing data creation/management initiatives and protocols within the Falkland Islands and South Georgia
- Consideration of how the **DPLUS065 Coastal Habitat** Mapping project could integrate and expand these current initiatives

WP5 – Project outputs integrated with existing/emerging initiatives

End of project workshop –
developing ideas for using
existing/innovating new spatial
tools for conservation planning &
land management in remote
areas.

WP5 – Project outputs integrated with existing/emerging initiatives

• End of project workshop—developing ideas for using existing/innovating new spatial tools for conservation planning & land management in remote areas.

Additional outputs

- Improved environmental baseline for the Falklands & South Georgia
- Better understanding of habitat/species distribution e.g. giant kelp
- Knowledge transfer to the wider community
- Greater awareness through education: FC Watch Group/ IJS Marine Forests / Shackleton Scholar
- Framework and tools for future habitat model updates (e.g. smartphone app.)

Spatial tools for conservation planning in remote spaces: end of project workshop

Any questions?

